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Abstract

This paper describes a recursive estimation algorithm used
for tracking the physical location of radioactive sources in
real-time as they are moved around in a facility. The al-
gorithm is a nonlinear least squares estimation that mini-
mizes the change in the source location and the deviation
between measurements and model predictions simultane-
ously. The measurements used to estimate position consist
of four count rates reported by four different gamma ray de-
tectors. There is an uncertainty in the source location due
to the variance of the detected count rate. This work repre-
sents part of a suite of tools which will partially automate
security and safety assessments, allow some assessments to
be done remotely, and provide additional sensor modalities
with which to make assessments.

1 Introduction

In this paper we describe an algorithm for recur-
sively estimating the real-time positions of radioactive
sources in a facility. In this work, we will explicitly
consider the problem of tracking a single source within
one room. We estimate the position by assuming a
known initial source position and then recursively esti-
mating the change in its position from this initial state.
Our data is four time series consisting of the count rate
at one second intervals from four gamma ray detectors
which are located at four different positions within the
room. The count rate at a particular sensor is the to-
tal number of gamma-energy photons received by the
sensor during a one second time interval. The specific
sensors that we use consist of a photoluminescent slab
of plastic attached to a photomultiplier tube. These
sensors do not form an image of the room in the way
that a camera would. This means that many of the
techniques for locating moving objects in images can
not be applied. Our approximations of the detected

count rate are based on a nonlinear model of each sen-
sor which relates the source location to the measured
count rate.

Our algorithm simultaneously minimizes the change in
the source location, and the deviation between the mea-
sured count rate and the modeled count rate. The pro-
cedure can be viewed as a nonlinear least squares esti-
mator which is simultaneously minimizing the expected
value of the difference between the detector measure-
ments and the model predicted count rates, and also
the expected value of the change in the source location,
all in the presence of noise. The predominant source
of noise comes from the stochastic nature of gamma
emissions from the source itself. Ideally, the emission
of gamma photons from a radioactive source over time
looks like a series of samples drawn from a Poisson dis-
tribution. Since the variance of a Poisson distribution
is equal to its mean, the uncertainty in the source lo-
cation based on the detector readings in a single time
interval is fairly high.

An analogy may clarify the difficulties associated with
this problem. Imagine a building containing only one
room and having a flat roof with four skylights cut
into the ceiling, each near one corner of the building.
You are standing on the roof and someone is walking
around in the room holding a candle. You must deter-
mine the position of the candle in the room by observ-
ing the relative brightness of the light coming through
the four skylights. Keep in mind that the flickering of
the candle leads to variations in its brightness that are
proportional to the square root of the brightness itself.
This analogy makes it clear that many image process-
ing techniques for tracking moving objects would be
ineffective on this problem.

The facility in question conducts various experiments
using radioactive materials, and knowing where the



sources are located has implications for both security
and safety. Currently all security and safety assess-
ments are made by people who are physically present
during experiments. The overall purpose of the project
is to provide tools to facilitate and enhance this as-
sessment process. Our algorithm is one part of a suite
of tools which will allow some of these assessments to
be made remotely. The tools will also provide sensor
modalities that are not available to people using only
their own senses. These tools will also be used to par-
tially automate the assessment process. These three
factors will enhance both security and safety by reduc-
ing personnel risk through remote assessment, provid-
ing new methods and sensor modalities for risk assess-
ment, and providing a source of independent verifica-
tion for the current assessment process.

2 Sensor Model

In this section we discuss the model that relates the
detected count rate from a point source to the position
of that source based on the analysis in [Tso83]. For
the ith detector, the relationship between the detected
count rate D; and the source position (u;,v;, w;) rela-
tive to that detector is given by
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for i = 1,2,...,m, where in our case m = 4. In this
equation § is the actual source strength, €; is the de-
tector efficiency, 7; is the dead time, &F; is the prod-
uct of all the correction factors (e.g., absorption and
backscattering), D; is the total number of counts per
unit time actually detected, B; is the number of counts
per unit time which constitute the background, and the
view factor €;(-) is the ratio of the number of particles
which actually enter the detector to the total number of
particles emitted by the source. The quantity €;(-) can
also be thought of as the solid angle subtended by the
detector for a particular source location, which ranges
between 0 and 4 7. For these detectors, the efficiency
is rated at ~10% for a Cs'37 source. The dead time
of a detector is defined to be the minimum length of
time which must separate incident photons in order for
them to be recorded as two separate pulses. The photo-
luminescent material used in these detectors has a dead
time of 3.3 nanoseconds. Note that there is one equa-
tion of this form for each of the m detectors. We will
use the right hand side of Equation (1) as an approx-
imation for the count rate given a particular position
(w4, v, w;), and we denote this function by M;(-).

For a point source and a rectangular detector of finite
size, the most general relative position is shown in Fig-
ure 1. The solid angle Q;(-) subtended by a detector

.
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Figure 1: The relative position between a point
source at position S and a rectangular detector of
width ‘W and height H{. The projections of the

source location onto the v and v axes are w; and
v; respectively.

of width W and height H for a point source located at
(us, vs, w;), relative to the ith detector, is given by
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as shown in [GY71]. The detectors that were used have
a height H of 0.83 feet and a width W of 3.00 feet.

It is clear from Figure 1 that the coordinate system
used to derive Equation (2) is detector centered, not
room centered. Since the desired answer is the source
location in room centered coordinates, a transforma-
tion must be made between these two coordinate sys-
tems. The required transformation converts room cen-
tered coordinates (x,y, z) into detector centered coor-
dinates (u;,v;, w;), which allows Equation (2) to be
properly evaluated. One way to construct this trans-
formation is by moving each of the detectors from their
actual location to the selected origin of the room. This
is accomplished by first rotating the sensor about the
v-axis in Figure 1, and then translating the rotated sen-
sor to the origin of the room. This transformation can



be written in matrix form as
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where T ;, Ty i, and 7 ; are the translations along the
room centered x, y, and z directions, respectively, for
the ith detector. The quantity A; is the rotation angle
around the v-axis for the ith detector. Note that the
source location in room centered coordinates is (z, y, z),
and that the source strength S is not changed by the
transformation in Equation (3).

3 Estimation Algorithm

In this section we discuss the estimation algorithm used
to track the position of the radioactive source over time.
This problem was posed as a state estimation problem
whose formulation is explained, for instance, in [SM71]
and [Jaz70]. In this context the measurements or out-
puts are the detected count rate D;(k) at each detector
1 at each time step k. In this problem, the state was
chosen to contain the source location (z(k), y(k), z(k))
at every time step k, and the background count rate
B; at each detector. We will assume that the back-
ground is the same at each detector, making B(k) in-
dependent of 7, and include this single quantity in the
state. We assume that the source strength S is known.
We also assume that at time & = 0 we have a good
estimate of the source position and background level
(2(0),y(0), 2(0), B(0)). Lastly we assume that the cor-
rection factor product JF; is constant over time. Note
that while these assumptions are not always reasonable,
in our problem they are often valid.

We compute the maximum a posteriori (MAP) esti-
mate for the state at each time step. As pointed out
in [SM71], for a Gaussian noise process this is equiva-
lent to finding a weighted least squares fit to the mea-
surements. Based on the analysis in [MN89], we have
shown that for a Poisson noise process, the MAP esti-
mate is still equivalent to a weighted least squares fit,
but with different weights. We have chosen the MAP
estimate over the extended Kalman filter (i.e., a con-
ditional mean estimate) because we must incorporate
state constraints into the estimation process, and be-
cause the noise process in our problem is Poisson not
Gaussian.

We denote any change in the state estimates at time
k by the vector d(k) = [0xz(k) dy(k) dz(k) dB(k)],
write the state estimates at a particular time step k
as the vector e(k) = [xz(k) y(k) z(k) B(k)], and call
the number of elements in each of these vectors p = 4.

Using these definitions, we update our estimate of the
source location and background level using the relation
e(k) = e(k—1)+d"(k), where d* (k) are state changes
which are optimal in some sense. At each time step k
the optimal estimated state change d* (k) is computed
by solving the optimization problem
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In this equation, M;(e(k — 1) + d(k)) represents our
approximation of the detected count rate f)i, given
by the right hand side of Equation (1) evaluated at
e(k — 1) + d(k) for the ith detector. Note that evalu-
ating the right hand side of Equation (1) requires solv-
ing Equations (2) and (3) first. The quantity W™ is
a weight which determines how closely the algorithm
tries to match the model. Similarly, Wjd sets how much
the algorithm tries to change the previous state esti-
mate. The term 31, W (D; — M, (e(k—1)+d(k)))”
is a weighted £ norm of the difference | D — D||;
between the actual detected count rate D and the
predicted detected count rate D. Likewise the term

?:1 wi d?(k) is the weighted L3 norm of the differ-
ence |le(k) — e(k — 1)||2 between the estimated posi-
tion and background at the previous time and that at
the current time. Conceptually this is a regulariza-
tion term which penalizes large changes in the state
estimate more than small changes. A block diagram
of this estimation algorithm is shown in Figure 2. In
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Figure 2: A block diagram of the state estimation
procedure.

this figure, M(-) is the vector form for the right hand
side of Equation (1), Z is the identity mapping, A~!
is a unit time delay, and ming;)(-) is the optimiza-
tion problem in Equation (4). So Equation (4) will



try to minimize the change in position and background
while simultaneously making a change that makes the
resulting position and background approximately agree
with the model. When selecting the weights, note that
making W]" large relative to Wjd reflects a high confi-
dence in the sensor model, while setting W]d high with
respect to W™ indicates confidence in the sensor mea-
surements. We have shown in [HTM99] that for the
MAP estimate of a process with Poisson noise, the ap-
propriate model weights are W™ = m The

quantity 72 is the constant of proportionality between
the variance and the mean, called the dispersion.

Note that there are upper and lower bounds on the
state change d(k) and on the state estimate e(k). The
constraints on the estimate e(k) are imposed so that
the estimated position can not be outside the room,
and the estimated background can not exceed histori-
cal bounds for the background levels in the room. The
constraints on the change in estimate d(k) are imposed
in order to keep noise from causing the position to jump
around excessively from time step to time step. Con-
ceptually these constraints are reasonable because the
sources are moved by people, and there is a limit to
how far a person can move in a given time interval.

The optimization problem posed in Equation (4) is a
nonlinear programming problem with linear inequality
constraints, which can be solved by a number of meth-
ods, many of which are discussed in [Ber95]. The opti-
mization algorithm that we chose was CFSQP, which is
documented in [LZT94]. This algorithm uses a sequen-
tial quadratic programming (SQP) approach, modified
so that each iteration is feasible with respect to the
constraints. We chose this algorithm because all the
intermediate iterates of the algorithm are feasible, so
if we have to stop the optimization before achieving
convergence, the resulting suboptimal solution will still
satisfy the constraints.

4 Tracking Results

In this section we present some tracking results based
on experiments with a real source in the facility. The
experimental procedure consisted of placing a Cs'37
source on a cart and moving it along a predetermined
path in the room. Along this path there were 17 points
at which we paused with the source for approximately
3 minutes each. The estimated position of the source
as seen from the ceiling looking down is shown in Fig-
ure 3. Figure 3(a) shows the estimated source positions
for dispersion y? = 1 for all 4, and Figure 3(b) shows
the locations with v? = 100. In both cases all the state
weights were Wjd = 1. The 17 numbers in these plots
show the actual positions of the points at which we
paused with the source. Beginning at point 1, we fol-
lowed the numbered points in ascending order, ending
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Figure 3: The estimated position of the source in
the 2-z plane with model weights (a) 47 = 1 (b)
~2 = 100. These plots show a view of the room from
the ceiling looking down. The detectors are located
in each of the four corners of these pictures.

at point 17. The points e in the figure represent the
pairs (z(k), z(k)) of the state estimate for every time
step k. These estimates are computed at 1 second inter-
vals, which is also the sampling rate for the detectors.
Our algorithm runs fast enough for us to compute each
state estimate in less than 1 second, hence we are able
to track the source in real-time relative to the detector
sampling rate. Although the detectors do not appear
in these pictures, they are located in each corner at a
45° angle with respect to the walls. Note that in Fig-
ure 3(a) most of the position estimates cluster around
one of the 17 numbered points, while in Figure 3(a)
there is a smooth track of points running through the
17 numbered points.

Figure 3 shows that most of the estimates of the source
location are close to the path described by the 17 points
where we paused with the source. However, it does not
show whether the estimates follow this path in the cor-
rect temporal order. Figure 4 shows the estimated po-
sition in both the x and z directions versus time for the
x-z plot shown in Figure 3(a). In these two plots the
the solid lines represent the estimated source position,
and the dotted lines represent the actual source posi-
tion. Figure 4(a) plots the position in the z-direction
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Figure 4: The estimated position of the source in
the (a) z-direction (b) z-direction versus time. The
dotted lines show the actual source position over
time.

versus time, and Figure 4(b) shows the z position with
respect to time. It is clear from this figure that the
numbered points are visited in the correct order.

We estimated the error of this tracking algorithm in the
following way. For each plateau in Figure 4(a) compute
the absolute value of the difference between the median
estimated position and the actual position. Then take
the median value of this difference over all the plateaus.
We performed the same calculation for the data in Fig-
ure 4(b). This gives a median error in both the z and
z directions. Note that this error measure is probably
dependent on the source strength. For the data shown
in Figure 4 this error was 0.74 feet in the z-direction
and 0.91 feet in the z-direction. So the median error
leads to an uncertainty in the source location which is a
rectangle around the actual location that is 1.48 feet in
the z-direction and 1.82 feet in the z-direction. Divid-
ing the area of this rectangle by the area of the room
itself leads to a percent location error of 0.21%. For
the z-z points shown in Figure 3(b), this error statistic
is 0.33%. Based on this error statistic it appears that

lower dispersion (i.e., v2 = 1) leads to more accurate
estimates than higher dispersion (i.e., v? = 100). Also
note that increasing the dispersion increases the time
lag between the estimated and actual locations.

5 Conclusion

We have described a real-time algorithm for tracking
the position of radioactive sources in a facility in the
presence of measurement noise. We formulated this
problem as a state estimation problem and solved it
recursively using a constrained nonlinear optimization
method. The optimization simultaneously minimizes
the change in source position and disagreement be-
tween measurements and a sensor model. The sensor
model is a fairly complex function relating position to
detected count rate. The overall purpose of this work is
to enhance both security and safety by automating part
of the assessment process, allowing remote assessment,
and introducing new sensor modalities into the assess-
ment process. We presented tracking results based on
an experiment done with one source in a single room.
Our results indicate that a source can be tracked quite
well with this algorithm in spite of rather high mea-
surement noise levels. In short, we have demonstrated
the capability to track a single source in real-time with
high accuracy in spite of a complex sensor model and
high measurement noise.
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